

Extremes

LAND SEA AIR SPACE Cryo Cold
Torrid Heat
Radiation
Vacuum
Pressure
Toxicity
Energetics
Scale

Arctic
Antarctic
Deserts
Volcanoes
Canyons
Craters
Oceans
Hot Springs
Vents

Battlefield NBC Plants Mines

Motivation for Robotics

Environments unnatural to humans Challenging to hazardous to fatal Hard access or unreachable Dynamic, unpredictable Humans in suits Insufficient technology Hard sensory and task requirements

Robotic Evolution

Technical Distinctions, Geometric Growth

Defense & Law Enforcement Robotics

Navlab (reconnaissance)

URBIE (urban reconnaissance)

RATLER (reconnaissance)

Andros (bomb disposal)

BUGS (UXO detection)

DarkStar (reconnaissance)

Hazardous Duty Robotics

BOA (asbestos removal)

Automated Underground Miner

Houdini (hazardous waste clean-up)

Rosie (dismantlement ops)

Pioneer (Chornobyl stabilization)

Orbital Robotics

Space Shuttle RMS

Ranger

AERCam Sprint

Mobile Service System

Special Purpose Dexterous Manipulator

Planetary Robotics

Sojourner

Prototype Athena MER

Lunokhod

LSR Robotic Rover

Inflatable Rover

Tri-Star

Nanorover

Marsokhod

Robotics in Planetary Analogs

Dante, Mount Erebus, 1992

Nomad, Atacama Desert, 1997

Dante II, Mount Spurr, 1994

Nomad, Patriot Hills, Antarctica, 1998

Meteorobot, Elephant Moraine, Antarctica, 2000

Hyperion, Devon Island, Canadian Arctic, 2001

Competencies

- Systems: design, mechatronics, control
- Intelligence: planning, learning, knowledge understanding, classification
- Computer vision: sensors, processing, image understanding
- Navigation: mapping, driving, exploration
- Action: basic manipulation, specialized tool deployment, earthmoving

Mobility

Autonomy

Autonomous Science Technologies

- Inter-site traverse and site coverage
- Drills, manipulators, and instruments integrated
- Science Autonomy, classification and experiment protocols
- Sample acquisition and preservation

Intra-site and inter-site science

Instruments, manipulators, and drills

Science protocols and operations

Sampling and preservation

http://www.frc.ri.cmu.edu/projects/meteorobot2000/

Challenges

- Specialization, integration and fielding
- Biological cleanliness
- Flawless function
- Longevity
- Facile operation
- Dexterity in manipulation & task execution
- Advanced thinking

Robotic Life-Seeking

- Crosscutting technologies and systemic competencies are more common than distinct
- However, each theme requires specialization
- Advanced robotic control, microsystems, data understanding and robust task execution are enabling factors
- Rudimentary robotics for life-seeking in deserts, canyons, volcanoes and hydrothermal environments exist, but serious D&I&V required

Robotics Vision

- Expand frontiers of exploration and science
- Enable new discoveries
- Cause world change
- Cannot replace humans but can take humans to the extremes
- Broaden universe of technologies, robots and applications
- Benefit interests of science, space, energy and defense

